How to evaluate this sum?
Evaluate #sum_(k=1)^99 k(k^2-1)#
Given that:
#sum_(k=1)^n k = (n(n+1))/2#
and
#sum_(k=1)^n k^3 = [sum_(k=1)^n k ]^2#
Evaluate
Given that:
and
2 Answers
Mar 12, 2018
#S_99=24497550#
Explanation:
We want to evaluate
#S_99=sum_(k=1)^99k(k^2-1)#
Let's take the general example
#S_n=sum_(k=1)^nk(k^2-1)=sum_(k=1)^nk^3-k=sum_(k=1)^nk^3-sum_(k=1)^nk#
Using
#sum_(k=1)^nk=(n(n+1))/2# #sum_(k=1)^nk^3=(sum_(k=1)^nk)^2=((n(n+1))/2)^2#
Thus
#S_n=((n(n+1))/2)^2-(n(n+1))/2#
For
#S_99=((99(99+1))/2)^2-(99(99+1))/2#
#S_99=((9900)/2)^2-(9900)/2#
#S_99=(9900^2-19800)/4=24497550#
Mar 12, 2018
Explanation:
Given that:
and
follows
hence
and for