Differentiate sin(ax+b)*cos(CX+d)?

3 Answers
Mar 12, 2018

#acos(ax+b)cos(cx+d)−csin(ax+b)sin(cx+d)#

Explanation:

#d/dx[sin(ax+b)cos(cx+d)]d/dx[sin(ax+b)cos(cx+d)] =d/dx[sin(ax+b)]⋅cos(cx+d)+sin(ax+b)⋅d/dx[cos(cx+d)] =d/dx[sin(ax+b)]⋅cos(cx+d)+sin(ax+b)⋅d/dx[cos(cx+d)] =cos(ax+b)⋅d/dx[ax+b]⋅cos(cx+d)+(−sin(cx+d))⋅d/dx[cx+d]⋅sin(ax+b) =cos⁡(ax+b)⋅d/dx[ax+b]⋅cos(cx+d)+(−sin(cx+d))⋅d/dx[cx+d]⋅sin(ax+b) =(a⋅d/dx[x]+d/dx[b])cos(ax+b)cos(cx+d)−(c⋅d/dx[x]+d/dx[d])sin(ax+b)sin(cx+d) =(a⋅d/dx[x]+d/dx[b])cos(ax+b)cos(cx+d)−(c⋅d/dx[x]+d/dx[d])sin(ax+b)sin(cx+d) =(1a+0)cos(ax+b)cos(cx+d)−(1c+0)sin(ax+b)sin(cx+d) =(1a+0)cos(ax+b)cos(cx+d)−(1c+0)sin(ax+b)sin(cx+d) =acos(ax+b)cos(cx+d)−csin(ax+b)sin(cx+d)#

Mar 12, 2018

Differential of #sin(ax+b)cos(cx+d)# is #acos(cx+d)cos(ax+b)-csin(ax+b)sin(cx+d))#

Explanation:

We use product formula here, which states that if #y=g(x)h(x)#, then #(dy)/(dx)=g(x)(dh(x))/(dx)+h(x)(dg(x))/(dx)#

Hence for differential of #y=sin(ax+b)cos(cx+d)#, observe that

we have #g(x)=sin(ax+b)# and #h(x)=cos(cx+d)#

therefore #(dg(x))/(dx)=acos(ax+b)# and #(dh(x))/(dx)=-csin(cx+d)#

Hence differential of #sin(ax+b)cos(cx+d)# is

#sin(ax+b)xx(-csin(cx+d))+cos(cx+d)xxacos(ax+b)#

= #acos(cx+d)cos(ax+b)-csin(ax+b)sin(cx+d))#

Mar 12, 2018

# 1/2[(a+c)cos{(a+c)x+(b+d)}#

#+(a-c)cos{(a-c)x+(b-d)}]#.

Explanation:

Recall that, #2sinucosv=sin(u+v)+sin(u-v)#.

Let, #y=sin(ax+b)cos(cx+d)#.

#:. 2y=2sin(ax+b)cos(cx+d)#,

#=sin(ax+b+cx+d)+sin(ax+b-cx-d#,

#=sin{(a+c)x+(b+d)}+sin{(a-c)x+(b-d)}#.

#:. d/dx(2y)=d/dx[sin{(a+c)x+(b+d)}#

#+sin{(a-c)x+(b-d)}]#.

#:. 2dy/dx=cos{(a+c)x+(b+d)}*d/dx{(a+c)x+(b+d)}#

#+cos{(a-c)x+(b-d)}*d/dx{(a-c)x+(b-d)}#,

#=(a+c)cos{(a+c)x+(b+d)}#

#+(a-c)cos{(a-c)x+(b-d)}#.

#rArr dy/dx=1/2[(a+c)cos{(a+c)x+(b+d)}#

#+(a-c)cos{(a-c)x+(b-d)}]#.