Differentiate sin(ax+b)*cos(CX+d)?

3 Answers
Mar 12, 2018

acos(ax+b)cos(cx+d)−csin(ax+b)sin(cx+d)acos(ax+b)cos(cx+d)csin(ax+b)sin(cx+d)

Explanation:

d/dx[sin(ax+b)cos(cx+d)]d/dx[sin(ax+b)cos(cx+d)] =d/dx[sin(ax+b)]⋅cos(cx+d)+sin(ax+b)⋅d/dx[cos(cx+d)] =d/dx[sin(ax+b)]⋅cos(cx+d)+sin(ax+b)⋅d/dx[cos(cx+d)] =cos(ax+b)⋅d/dx[ax+b]⋅cos(cx+d)+(−sin(cx+d))⋅d/dx[cx+d]⋅sin(ax+b) =cos⁡(ax+b)⋅d/dx[ax+b]⋅cos(cx+d)+(−sin(cx+d))⋅d/dx[cx+d]⋅sin(ax+b) =(a⋅d/dx[x]+d/dx[b])cos(ax+b)cos(cx+d)−(c⋅d/dx[x]+d/dx[d])sin(ax+b)sin(cx+d) =(a⋅d/dx[x]+d/dx[b])cos(ax+b)cos(cx+d)−(c⋅d/dx[x]+d/dx[d])sin(ax+b)sin(cx+d) =(1a+0)cos(ax+b)cos(cx+d)−(1c+0)sin(ax+b)sin(cx+d) =(1a+0)cos(ax+b)cos(cx+d)−(1c+0)sin(ax+b)sin(cx+d) =acos(ax+b)cos(cx+d)−csin(ax+b)sin(cx+d)

Mar 12, 2018

Differential of sin(ax+b)cos(cx+d) is acos(cx+d)cos(ax+b)-csin(ax+b)sin(cx+d))

Explanation:

We use product formula here, which states that if y=g(x)h(x), then (dy)/(dx)=g(x)(dh(x))/(dx)+h(x)(dg(x))/(dx)

Hence for differential of y=sin(ax+b)cos(cx+d), observe that

we have g(x)=sin(ax+b) and h(x)=cos(cx+d)

therefore (dg(x))/(dx)=acos(ax+b) and (dh(x))/(dx)=-csin(cx+d)

Hence differential of sin(ax+b)cos(cx+d) is

sin(ax+b)xx(-csin(cx+d))+cos(cx+d)xxacos(ax+b)

= acos(cx+d)cos(ax+b)-csin(ax+b)sin(cx+d))

Mar 12, 2018

1/2[(a+c)cos{(a+c)x+(b+d)}

+(a-c)cos{(a-c)x+(b-d)}].

Explanation:

Recall that, 2sinucosv=sin(u+v)+sin(u-v).

Let, y=sin(ax+b)cos(cx+d).

:. 2y=2sin(ax+b)cos(cx+d),

=sin(ax+b+cx+d)+sin(ax+b-cx-d,

=sin{(a+c)x+(b+d)}+sin{(a-c)x+(b-d)}.

:. d/dx(2y)=d/dx[sin{(a+c)x+(b+d)}

+sin{(a-c)x+(b-d)}].

:. 2dy/dx=cos{(a+c)x+(b+d)}*d/dx{(a+c)x+(b+d)}

+cos{(a-c)x+(b-d)}*d/dx{(a-c)x+(b-d)},

=(a+c)cos{(a+c)x+(b+d)}

+(a-c)cos{(a-c)x+(b-d)}.

rArr dy/dx=1/2[(a+c)cos{(a+c)x+(b+d)}

+(a-c)cos{(a-c)x+(b-d)}].