In \triangle DEFDEF, MM is the centroid. (i). Find \overline{MK}¯¯¯¯¯¯¯¯MK and \overline{DK}¯¯¯¯¯¯¯DK " " (ii). Find \overline{LM}¯¯¯¯¯¯¯LM and \overline{LE}¯¯¯¯¯¯LE " " (iii). Write an expression for FJFJ?

enter image source here

1 Answer
Mar 14, 2018

see explanation.

Explanation:

Recall that the centroid of a triangle divides each median in the ratio 1:21:2 :
=> DM:MK=2:1DM:MK=2:1,
=> 8:MK=2:1, => MK=48:MK=2:1,MK=4
=> DK=DM+MK=8+4=12DK=DM+MK=8+4=12
SImilarly,
LM:ME=1:2LM:ME=1:2,
=> LM:6=1:2LM:6=1:2,
=> LM=3LM=3,
=> LE=LM+ME=3+6=9LE=LM+ME=3+6=9,
SImilarly,
FM:MJ=2:1FM:MJ=2:1,
=> 2x:2y=2:12x:2y=2:1,
=> 2y=x2y=x
=> FJ=FM+MJ=2x+2y=2x+x=3xFJ=FM+MJ=2x+2y=2x+x=3x