How do you find the derivative of e^(-5x^3+x)?

1 Answer
Mar 14, 2018

-15e^(-5x^3+x)x^2+e^(-5x^3+x)

Explanation:

According to the chain rule, (f(g(x)))'=f'(g(x))*g'(x)

Here, we have:

f(u)=e^u, where

u=g(x)=-5x^3+x

We do:

d/(du)e^u*(-(d/dx5x^3-d/dxx))

e^u*(-(15x^2-1))

e^u(-15x^2+1)

-15e^ux^2+e^u

But since u=-5x^3+x, we say:

-15e^(-5x^3+x)x^2+e^(-5x^3+x)