ABCD is a quadrilateral. Show that vec(AB)+vec(AD)+vec(CB)+vec(CD)=4vec(PQ)AB+AD+CB+CD=4PQ where P and Q are the mid points of AC and BD respectively?

1 Answer
Mar 14, 2018

That's true

Explanation:

https://www.geogebra.org/m/WgaNJ5Xq

enter image source here

\vec (AB)+\vec (AD)= 2 \cdot \vec (AQ)AB+AD=2AQ
\vec (AB)+\vec (BC)= 2 \cdot \vec (AP)AB+BC=2AP
\vec (PQ)=\vec (AQ)- \vec (AP)PQ=AQAP

2 cdot \vec(PQ)=\vec (AD)+\vec(CB)2PQ=AD+CB
2 cdot \vec(PQ)=\vec (AB)+\vec(CD)2PQ=AB+CD