How do you prove? [cos(pi/2-x)-2cos(pi/2-x)sin^2x+cos(pi/2-x)sin^4x]sec^5(-x) = tanx[cos(π2x)2cos(π2x)sin2x+cos(π2x)sin4x]sec5(x)=tanx

Thank you!

2 Answers
Mar 14, 2018

Verified below

Explanation:

(cos(pi/2-x)-2cos(pi/2-x)sin^2x+cos(pi/2-x)sin^4x)sec^5(-x)=tanx(cos(π2x)2cos(π2x)sin2x+cos(π2x)sin4x)sec5(x)=tanx

Let's start by applying the cos difference identity:
Cos(alpha-theta)=cosalphacostheta+sinalphasinthetacos(αθ)=cosαcosθ+sinαsinθ
(cos(pi/2)cosx+sin(pi/2)sinx)-2(cos(pi/2)cosx+sin(pi/2)sinx)sin^2x+(cos(pi/2)cosx+sin(pi/2)sinx)sin^4x)sec^5(-x)=tanx(cos(π2)cosx+sin(π2)sinx)2(cos(π2)cosx+sin(π2)sinx)sin2x+(cos(π2)cosx+sin(π2)sinx)sin4x)sec5(x)=tanx

Let's simplify:
(cancel(0*cosx)+1*sinx)-2(cancel(0*cosx)+1*sinx)sin^2x+(cancel(0*cosx)+1*sinx)sin^4x)sec^5(-x)=tanx

(sinx)-2(sinx)sin^2x+(sinx)sin^4x)sec^5(-x)=tanx

Note that secant is in fact an even function:
(sinx-2sin^3x+sin^5x)sec^5(x)= tanx

Let's try factoring by GCF:
sinx(1-2sin^2x+sin^4x)sec^5(x)= tanx

We can now factor the parenthesis:
sinx(1-sin^2x)(1-sin^2x)sec^5(x)= tanx

A very familiar modified Pythagorean identity will now be implemented:
1-sin^2x=cos^2x

Substitute:
sinx(cos^2x)(cos^2x)sec^5(x)= tanx

Simplify:
sinx*cos^4x*sec^5x= tanx

Apply the secant reciprocal identity:
1/cosx= secx

Substitute:
sinx*cos^4x*1/cos^5x= tanx

Simplify:
sinx*cancel(cos^4x)*1/cos^cancel(5)x= tanx

sinx*1/cosx=tanx

sinx/cosx=tanx

tanx=tanx

Mar 15, 2018

See below

Explanation:

The expression

[cos(pi/2-x)-2cos(pi/2-x)sin^2x+cos(pi/2-x)sin^4x]sec^5(-x)

simplifies considerably if you use cos(pi/2-x) = sin x and sec(-x) = sec(x), becoming

(sinx-2sin^3x+sin^5x)sec^5x
= sin x(1-2sin^2x+sin^4x)sec^5x
=sinx(1-sin^2x)^2sec^5x
=sinx cos^4xsec^5x = sinxsecx=tanx