Find the first 3 and last 3 terms in the expansion #(2x-1)^11# using the binomial theorem?

1 Answer
Mar 15, 2018

#-1,22x,-220x^2,28160x^9,-11264x^10,2048x^11#

Explanation:

#(ax+b)^n=sum_(r=0)^n((n),(r))(ax)^rb^(n-r)=sum_(r=0)^n(n!)/(r!(n-r)!)(ax)^rb^(n-r)#

So, we want #rin{0,1,2,9,10,11}#

#(11!)/(0!(11-0)!)(2x)^0(-1)^11=1(1)(-1)=-1#
#(11!)/(1!(11-1)!)(2x)^1(-1)^10=11(2x)(1)=22x#
#(11!)/(2!(11-2)!)(2x)^2(-1)^9=55(4x^2)(-1)=-220x^2#
#(11!)/(9!(11-9)!)(2x)^9(-1)^2=55(512x^9)(1)=28160x^9#
#(11!)/(10!(11-10)!)(2x)^10(-1)^1=11(1024x^10)(-1)=-11264x^10#
#(11!)/(11!(11-11)!)(2x)^11(-1)^0=1(2048x^11)(1)=2048x^11#

These are the first 3 and last 3 terms in order of increasing powers of #x#:
#-1,22x,-220x^2,28160x^9,-11264x^10,2048x^11#