Evaluate #int(x^6+1)/(x^2+1)dx# ?

3 Answers
Mar 17, 2018

#int (x^6+1)/(x^2+1) dx = x^5/5 -x^3/3 +x+C#

Explanation:

Substitute #x= tant#, #dx = sec^2tdt#:

#int (x^6+1)/(x^2+1) dx = int (tan^6t+1)/(tan^2t +1) sec^2tdt#

Use now the trigonometric identity:

#tan^2 alpha +1 = sin^2alpha/cos^2alpha +1 = (sin^2alpha +cos^2alpha)/cos^2alpha = 1/cos^2alpha = sec^2alpha#

to get:

#int (x^6+1)/(x^2+1) dx = int (tan^6t+1)/sec^2t sec^2tdt = int (tan^6t+1)dt#

Using the linearity of the integral:

#(1) " " int (x^6+1)/(x^2+1) dx = int tan^6tdt +int dt = t + int tan^6tdt#

Solve now:

#int tan^6tdt = int tan^4t tan^2t dt = int tan^4 (sec^2t-1)dt#

#int tan^6tdt = int tan^4 sec^2tdt -int tan^4dt#

#int tan^6tdt = int tan^4 d(tant) -int tan^2 (sec^2t-1)dt#

#int tan^6tdt =tan^5t/5 -int tan^2 sec^2tdt + int tan^2tdt#

#int tan^6tdt =tan^5t/5 - tan^3t/3 + int (sec^2t -1)dt#

#int tan^6tdt =tan^5t/5 - tan^3t/3 + int sec^2tdt -intdt#

#int tan^6tdt =tan^5t/5 - tan^3t/3 + tant - t +C#

Substituting in #(1)#:

# int (x^6+1)/(x^2+1) dx = t + tan^5t/5 - tan^3t/3 + tant - t +C#

# int (x^6+1)/(x^2+1) dx = tan^5t/5 - tan^3t/3 + tant + C#

and undoing the substitution:

#int (x^6+1)/(x^2+1) dx = x^5/5 -x^3/3 +x+C#

Note: from the result I realized that:
#(x^6+1)/(x^2+1) = x^4-x^2+1#
My fault not to remember the simple algebraic formula:
#(x^n+1) = (x+1)(x^(n-1)-x^(n-2) +x^(n-3) -...+1)#
valid for #n# odd where in this case #x^2# is in place of #x#.
*

Mar 17, 2018

#1/5x^5-1/3x^3+x+C#

Explanation:

When integrating a rational function where the numerator has a degree equal to or higher than the denominator, start by doing "algebraic division" of the numerator by the denominator:

#\ \ \ \ \ \ \ \ \ \ \ \ ul(x^4\ \ \ \ \ \ \ \ -x^2\ \ \ \ \ \ \ \ +1\ \ )#
# x^2+1|x^6\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +1#
#\ \ \ \ \ \ \ \ \ \ \ \ ul(x^6+x^4)#
#\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -x^4#
#\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ul(-x^4-x^2)#
#\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x^2\ \ \ \ \ \ \ \ +1#
#\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ul(x^2\ \ \ \ \ \ \ \ +1)#
#\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ul(ul(0))#

In this unusual trick question the remainder is zero, so the denominator was a factor of the numerator, so the fraction is the polynomial #x^4-x^2+1# which trivially integrates to the answer given. Sneaky!

Mar 18, 2018

#x^5/5-x^3/3+x+C#

Explanation:

Consider the formula for a Geometric Series:
#a+ar+ar^2+...+ar^(n-1)=a((1-r^n)/(1-r))#
Let #a=1#, #r=-x^2#, #n=3#:
#1-x^2+x^4=1((1-(-x^2)^3)/(1-(-x^2)))#
#=(x^6+1)/(x^2+1)#
Hence #int(x^6+1)/(x^2+1)dx=int(x^4-x^2+1)dx#
#=x^5/5-x^3/3+x+C#