A water balloon is catapulted into the air so that its height H , in meters, after T seconds is h=-4.9t=27t=2.4.Help me solve these questions?

A.) How high is the ball after 1 second?
B.)What is the maximum height of the balloon?
C.)When will the balloon burst as it hits the ground?

1 Answer
Mar 21, 2018

A) #h(1)=24.5m#
B) #h(2.755)=39.59m#
C) #x=5.60"seconds"#

Explanation:

I'll assume that #h=-4.9t=27t=2.4# should be #h=-4.9t^2+27t+2.4#

A)
Solve in terms of #t=(1)#
#h(1)=-4.9(1)^2+27(1)+2.4# #color(blue)("Add")#
#h(1)=color(red)(24.5m)#

B)
Vertex formula is #((-b)/(2a), h((-b)/(2a)))#
Remember: #ax^2+bx+c#
Vertex: #(-27)/(2(-4.9)) = 2.755# #color(blue)("Solve")#
#h((-b)/(2a))=h(2.755)# #color(blue)("Plug 2.755 into t in the original equation")#
#h(2.755)=-4.9(2.755)^2+27(2.755)+2.4# #color(blue)("Solve")#
#h(2.755)=color(red)(39.59m)#

C)
Find the #"x-intercepts"# using the quadratic formula:
#(-b±sqrt((b)^2-4ac))/(2a)#
#(-(27)±sqrt((27)^2-4(-4.9)(2.4)))/(2(-4.9)# #color(blue)("Solve")#
#(-27±27.86)/-9.8# #color(blue)("Determine which x-intercept is logical in this situation")#

#(-27+27.86)/-9.8=-.0877" seconds"#

#(-27-27.86)/-9.8=5.5979" seconds"#

A negative value in terms of seconds would not make sense in this problem, therefore the answer is #color(red)(x=5.60" seconds"))#