Problems like this are confusing because it's hard to find a good way to express the number of each kind of parts.
It's really helpful to describe these numbers all in terms of the same variable,
So let #10x# represent the number of #"Nubs"#
#"Nubs"# . . . . . . . . . . . . . . . . #10x# #larr# number of #"Nubs"#
One half of #"Nubs"# . . . . . . .#5x# #larr# number of #"Dulls"#
One fifth of #"Dulls"# . . . . . . #1x# #larr# number of #"Bubs"#
The sum of all these parts equals #32#
#[ "Nubs" ] + [ "Dulls" ] + [ "Bubs" ] = 32#
#[ 10x ] + [ 5x ] + [ x ] = 32#
#10x + 5x + x= 32#
Solve for #x#, already defined as "the number of #"Bubs"#"
1) Combine like terms
#16x = 32#
2) Divide both sides by #16# to isolate #x#, already defined as "the number of #"Bubs"#"
• #x = 2# #larr# answer for "the number of #"Bubs"#"
• If #x=2# (which is "the number of #"Bubs"#"),
then the number of #"Dulls"#, (which is #5x#), must be #10#
• If the number of #"Bubs" # is #10#,
then the number of #"Nubs"# must be #20#
#color(white)(mmmmmmmm)#―――――――――
Answer
#color(white)(h)##2 "Bubs"#
#10 "Dulls"#
#20 "Nubs"#
#color(white)(mmmmmmmm)#―――――――――
Check
#"Bubs" . . . . . . 2#
#"Dulls" . . . . . 10#
#"Nubs" . . . . . 20#
#color(white)(mmmnm)#――
#color(white)(mmmmmj)##32# parts altogether
#Check#