Integral by substitution trigonometric ? a- ) int x/sqrt(9-x²)

I can not completely resolve this issue, please someone give me a hint how to solve!

2 Answers
Mar 25, 2018

intx/sqrt(9-x^2)dx=-sqrt(9-x^2)+C

Explanation:

So, we want

intx/sqrt(9-x^2)dx

In general, if we encounter an integral with the root sqrt(a^2-x^2), we can make the trigonometric substitution

x=asintheta

(We could use cosine, but using sine avoids unnecessary negative signs popping up.)

Here, a^2=9, a=3, x=3sintheta, dx=3costhetad theta

Rewrite with the substitution:

int(9sinthetacosthetad theta)/sqrt(9-9sin^2theta)

Simplify:

int(9sinthetacosthetad theta)/sqrt(9(1-sin^2theta))=3int(sinthetacosthetad theta)/sqrt(1-sin^2theta)

Recall the identity

sin^2theta+cos^2theta=1

This tells us that 1-sin^2theta=cos^2theta. Apply this identity to our integral:

3int(sinthetacosthetad theta)/sqrt(cos^2theta)

sqrt(cos^2theta)=|costheta|=costheta -- We drop the absolute value bars and assume we're positive.

3int(sinthetacancelcostheta)/(cancelcostheta)d theta

3intsinthetad theta=-3costheta+C

We need to go back to x. Now, recall x=3sintheta. Therefore, sintheta=x/3. Let's once again use the identity sin^2theta+cos^2theta=1:

x^2/9+cos^2theta=9/9

cos^2theta=(9-x^2)/9

costheta=sqrt(9-x^2)/3

So, our integral becomes

intx/sqrt(9-x^2)dx=-sqrt(9-x^2)+C

Mar 25, 2018

intx/sqrt(9-x^2)dx=-sqrt(9-x^2)+C

Explanation:

The question is to evaluate:

intx/sqrt(9-x^2)dx

Draw a right-angle triangle with an angle theta.

Label the side opposite theta as x.
Label the hypotenuse as 3.

Now examine the triangle and notice that sintheta=x/3, and so:

x=3sintheta
dx=3costheta dtheta

Also notice that the side of the triangle adjacent to theta must be sqrt(9-x^2) by the Pythagorean Theorem. Therefore:

costheta=sqrt(9-x^2)/3

sqrt(9-x^2)=3costheta

Now rewrite the integral in terms of theta:

int ((3sintheta))/((3costheta))(3costheta dtheta)

Now simplify:

int ((3sintheta))/(cancel((3costheta)))cancel((3costheta dtheta)

int3sintheta dtheta =-3costheta+C

Now put the expression back in terms of x:

=-sqrt(9-x^2)+C