How do you integrate?

int_sqrt3^2(sqrt(x^2-3))/xdx

2 Answers
Mar 26, 2018

int_sqrt3^2(sqrt(x^2-3))/xdx=1-(pisqrt3)/6

Explanation:

We could use trigonometric substitution to deal with this integral.

Draw a right triangle with angle theta.

Label the hypotenuse as x.

Label the side adjacent to theta as sqrt3

Now we can write

sectheta=x/sqrt3

rArrcolor(green)(x=sqrt3sectheta)

rArrcolor(red)(dx=sqrt3secthetatantheta color(red)dcolor(red)theta

Also, by the Pythagorean Theorem, the side of the triangle opposite to theta is sqrt(x^2-3). So we can write

tantheta=sqrt(x^2-3)/sqrt3

rArrcolor(blue)(sqrt(x^2-3)=sqrt3tantheta)

Now let's write the integral in terms of theta

int_sqrt3^2color(blue)sqrt(x^2-3)/color(green)xcolor(red)dxrArrint_sqrt3^2color(blue)(sqrt3tantheta)/color(green)(sqrt3sectheta)color(red)(sqrt3secthetatantheta color(red)dcolor(red)theta)

Now simplify

rArrint_sqrt3^2(sqrt3tantheta)/cancel(sqrt3sectheta)cancel(sqrt3sectheta)tantheta dtheta

rArrint_sqrt3^2sqrt3tan^2theta dtheta

Use the identity sec^2theta=1+tan^2theta

rArrsqrt3int_sqrt3^2(sec^2theta-1)dtheta

Now we can take the integral

rArrsqrt3[tantheta-theta]_sqrt3^2

Put it back in terms of x

rArrsqrt3[(sqrt(x^2-3))/sqrt3-arctan((sqrt(x^2-3))/sqrt3)]_sqrt3^2

Now let's evaluate the endpoints:

rArrsqrt3[(sqrt(4-3)/sqrt3-arctan(sqrt(4-3)/sqrt3))-(sqrt(3-3)/sqrt3-arctan(sqrt(3-3)/sqrt3))]

rArrsqrt3[(1/sqrt3-arctan(1/sqrt3))-(0-arctan(0))]

rArrsqrt3[1/sqrt3-pi/6]

rArr1-(pisqrt3)/6

Mar 26, 2018

In the given problem

I=int\ sqrt(x^2−3)/xdx

Substitute u=sqrt(x^2−3)
Differentiating both sides with respect to respective variables we get

du=x/sqrt(x^2−3)dx
=> dx=sqrt(x^2−3)/xdu

:.I=int\ (sqrt(x^2−3)/x)(sqrt(x^2−3)/xdu)
=>int\ u^2/(u^2+3)du

Rewriting numerator as (u^2+3)-3 and simplifying we get

I=int\ (1-3/(u^2+3))du
I=I_1-I_2=int\ du-int3/(u^2+3)du

Now

I_1=u

and by dividing both numerator and denominator with 3,I_2 can be rewritten as

I_2=int\ 1/((u/sqrt3)^2+1)du

substitute v=u/sqrt3 to make it a standard integral. We get

dv=(du)/sqrt3
:.I_2=sqrt3int\ 1/(v^2+1)dv
=>I_2=sqrt3tan^-1v " (using standard integral")

Making substitution back to u we get

I=u-sqrt3tan^-1(u/sqrt3)+C
where C is a constant of integration.

Making substitution back to x and applying limits we get

I=[sqrt(x^2−3)-sqrt3tan^-1((sqrt(x^2−3))/sqrt3)+C]_sqrt3^2
I=[sqrt(2^2−3)-sqrt3tan^-1((sqrt(2^2−3))/sqrt3)+C]-[sqrt((sqrt3)^2−3)-sqrt3tan^-1((sqrt((sqrt3)^2−3))/sqrt3)+C]
=>I=1-sqrt3tan^-1(1/sqrt3)
=>I=1-sqrt3pi/6