Int_Sin4x/Sin^4x+Cos^4x=?

1 Answer
Mar 26, 2018

#I=-ln(cos(4x)+3)+C#

Explanation:

We want to solve

#I=intsin(4x)/(sin^4(x)+cos^4(x))dx#

Rewrite the integrand using the identity

#color(blue)(sin^4(x)+cos^4(x)=1/4(cos(4x)+3))#

Thus

#I=intsin(4x)/(1/4(cos(4x)+3))dx=int(4sin(4x))/(cos(4x)+3)dx#

Make a substitution #color(brown)(u=cos(4x)+3=>du=-4sin(4x)dx#

#I=-int1/udu=-ln(u)+C#

Substitute back #u=cos(4x)+3#

#I=-ln(cos(4x)+3)+C#