Integral of 1/(route 2x+5)+(route 2x-3)?
- 1/
#sqrt(2x+5)# +#sqrt(2x-3#
- 1/
#sqrt(2x+5)# +#sqrt(2x-3#
1 Answer
Mar 26, 2018
Explanation:
We want to solve
#I=int1/(sqrt(2x+5)+sqrt(2x-3))dx#
Rationalize the denominator of the integrand
#I=int1/(sqrt(2x+5)+sqrt(2x-3))*(sqrt(2x+5)-sqrt(2x-3))/(sqrt(2x+5)-sqrt(2x-3))dx#
#color(white)(I)=int(sqrt(2x+5)-sqrt(2x-3))/(2x+5-(2x-3))dx#
#color(white)(I)=1/8intsqrt(2x+5)-sqrt(2x-3)dx#
Make a substitution
#I=1/16intsqrt(u+5)-sqrt(u-3)dx#
#color(white)(I)=1/16(2/3(u+5)^(3/2)-2/3(u-3)^(3/2))+C#
#color(white)(I)=1/24((u+5)^(3/2)-(u-3)^(3/2))+C#
Substitute back
#I=1/24((2x+5)^(3/2)-(2x-3)^(3/2))+C#