Integral of 1/(route 2x+5)+(route 2x-3)?

  • 1/#sqrt(2x+5)#+#sqrt(2x-3#

1 Answer
Mar 26, 2018

#I=1/24((2x+5)^(3/2)-(2x-3)^(3/2))+C#

Explanation:

We want to solve

#I=int1/(sqrt(2x+5)+sqrt(2x-3))dx#

Rationalize the denominator of the integrand

#I=int1/(sqrt(2x+5)+sqrt(2x-3))*(sqrt(2x+5)-sqrt(2x-3))/(sqrt(2x+5)-sqrt(2x-3))dx#

#color(white)(I)=int(sqrt(2x+5)-sqrt(2x-3))/(2x+5-(2x-3))dx#

#color(white)(I)=1/8intsqrt(2x+5)-sqrt(2x-3)dx#

Make a substitution #color(brown)(u=2x=>du=2dx#

#I=1/16intsqrt(u+5)-sqrt(u-3)dx#

#color(white)(I)=1/16(2/3(u+5)^(3/2)-2/3(u-3)^(3/2))+C#

#color(white)(I)=1/24((u+5)^(3/2)-(u-3)^(3/2))+C#

Substitute back #u=2x#

#I=1/24((2x+5)^(3/2)-(2x-3)^(3/2))+C#