Find the roots of 4x^2 - 5x = 3? In simplest radical form.

2 Answers
Mar 26, 2018

Use the formula x_1,2=(-b(+or-)(b^2-4*a*c)^(1/2))/(2*a)

Explanation:

Write the equation in form:ax^2+bx+c=0
4x^2-5x-3=0
Apply the formula:
x_1=(5+(5^2-4*4*(-3))^(1/2))/(2*4)=(5+(25+16*3)^(1/2))/(8)= (5+(25+16*3)^(1/2))/(2*4)=(5+(73)^(1/2))/(8)
x_2=(5-(5^2-4*4*(-3))^(1/2))/(2*4)=(5-(25+16*3)^(1/2))/(8)= (5+(25+16*3)^(1/2))/(2*4)=(5-(73)^(1/2))/(8)
4x^2-5x-3=(x-(5+(73)^(1/2))/(8))(x-(5-(73)^(1/2))/(8))

Mar 26, 2018

x=5/8+-1/8sqrt73

Explanation:

"first rearrange the equation into standard form"

rArr4x^2-5x-3=0larrcolor(blue)"in standard form"

"solve for x using the "color(blue)"quadratic formula"

•color(white)(x)x=(-b+-sqrt(b^2-4ac))/(2a)larrcolor(blue)"quadratic formula"

"here "a=4, b=-5" and "c=-3

x=(5+-sqrt(25+48))/8

color(white)(x)=(5+-sqrt73)/8

rArrx=5/8+-1/8sqrt73