Whats the angle between the two?

#i-sqrt3k# and #2i+k-3j#

1 Answer
Mar 28, 2018

If we have two vectors #vec a=((x_0),(y_0),(z_0))# and #vec b((x_1),(y_1),(z_1))#, then the angle #theta# between them is related to as

#vec a*vec b=|vec a||vec b|cos(theta)#

or

#theta=arccos((vec a*vec b)/(|vec a||vec b|))#

In the problem, there are two vectors given to us: #vec a=((1),(0),(sqrt(3)))# and #vec b=((2),(-3),(1))#.

Then, #|vec a|=sqrt(1^2+0^2+sqrt(3)^2)=2# and #|vec b|=sqrt(2^2+(-3)^2+1^2)=sqrt(14)#.

Also, #vec a*vec b=1*2+0*(-3)+sqrt(3)*1=2+sqrt(3)#.

Therefore, the angle #theta# between them is

#theta=arccos((vec a*vec b)/(|vec a||vec b|))=arccos((2+sqrt(3))/(2*sqrt(14)))~~60.08^@#.