How i do to solve this integrate?

int(t-2)/sqrt(27+6t-t^2)dt

2 Answers
Mar 30, 2018

int(t-2)/(sqrt(27+6t-t^2))dt

=-sqrt(36-(t-3)^2)+arcsin((t-3)/6)+C

Explanation:

We are asked to evaluate the indefinite integral

int(t-2)/(sqrt(27+6t-t^2))dt

Let's begin by completing the square under the radical.

rArrint(t-2)/(sqrt(27-(t^2-6t)))dt

rArrint(t-2)/(sqrt(27-(t^2-6t+color(red)(9)-color(orange)9)))dt

rArrint(t-2)/(sqrt(27+color(orange)9-(t^2-6t+color(red)(9))))dt

rArrint(t-2)/(sqrt(36-(t-3)^2))dt

We can now apply trigonometric substitution.

Let

sintheta=(t-3)/6

rArrt-3=6sintheta

rArrcolor(red)(t-2=6sintheta+1)

rArrcolor(green)(dt=6costheta) color(green)dcolor(green)theta

And let

costheta=(sqrt(36-(t-3)^2))/6

rArrcolor(orange)(sqrt(36-(t-3)^2)=6costheta)

Now we can rewrite the integral in terms of theta

int (color(red)(6sintheta+1))/(color(orange)(6costheta))color(green)(6costheta) color(green)dcolor(green)theta

This greatly simplifies the integral!

int (color(red)(6sintheta+1))/(cancelcolor(orange)(6costheta))cancelcolor(green)(6costheta) color(green)dcolor(green)theta

rArrint (6sintheta+1) dtheta

Integrating, we get

rArr-6costheta+theta+C

And now we can rewrite the result in terms of t

rArr-6((sqrt(36-(t-3)^2))/6)+arcsin((t-3)/6)+C

rArr-sqrt(36-(t-3)^2)+arcsin((t-3)/6)+C

Mar 30, 2018

int(t-2)/sqrt(27+6t-t^2)dt=2arcsin(sqrt(3(t+3))/6)-sqrt(27+6t-t^2)+C

Explanation:

.

int(t-2)/sqrt(27+6t-t^2)dt=int(t-2)/sqrt((-(t^2-6t-27)))dt=

int(t-2)/sqrt(-(t-9)(t+3))dt

Let u=t+3, :. du=dt, and

t=u-3, :. t-2=u-5, t-9=u-12,

Let's substitute:

=int(u-5)/sqrt(-(u-12)u)du=int(u-5)/sqrt(u(12-u))du=

int(u-5)/sqrt(12u-u^2)du

Let's use trigonometric substitution:

We draw a right triangle and label an angle theta as shown below:
enter image source here
Now, we will right the basic trigonometric functions for the angle theta:

sintheta=u/sqrt(12u)=sqrt(12u)/12

costheta=sqrt(12u-u^2)/sqrt(12u)

tantheta=u/sqrt(12u-u^2

sin^2theta=u^2/(12u)=u/12

2sinthetacosthetad theta=(du)/12

u=12sin^2theta

du=24sinthetacosthetad theta

sqrt(12u-u^2)=sqrt(12u)costheta=sqrt(12(12sin^2theta))costheta

sqrt(12u-u^2)=12sinthetacostheta

Let's substitute:

int(u-5)/sqrt(12u-u^2)du=int(12sin^2theta-5)/(12sinthetacostheta)(24sinthetacostheta)d theta=

2int(12sin^2theta-5)d theta=24intsin^2thetad theta-10intd theta=

24int(1-cos2theta)/2d theta-10theta=12intd theta-12intcos2thetad theta-10theta=

12theta-12I-10theta=2theta-12I

I=intcos2thetad theta

Let z=2theta, :. dz=2d theta, :. d theta=(dz)/2

I=1/2intcoszdz=1/2sinz=1/2sin2theta

2theta-12I=2theta-6sin2theta

Using the double angle formula:

sin2x=2sinxcosx

2theta-12I=2theta-12sinthetacostheta

Let's substitute back for u:

int(u-5)/sqrt(12u-u^2)du=2arcsin(sqrt(12u)/12)-12(sqrt(12u)/12)(sqrt(12u-u^2)/sqrt(12u))=

2arcsin(sqrt(12u)/12)-cancelcolor(red)(12)(cancelcolor(purple)(sqrt(12u)))/cancelcolor(red)(12)(sqrt(12u-u^2)/cancelcolor(purple)(sqrt(12u)))=

=2arcsin((sqrt(3u))/6)-sqrt(12u-u^2

Now, we can substitute back for t:

int(t-2)/sqrt(27+6t-t^2)dt=2arcsin(sqrt(3(t+3))/6)-sqrt(27+6t-t^2)+C

This is one form of the solution. The result can be in many different forms depending on what you choose to be u and how you set up your triangle and what trigonometric functions you use.