.
int(t-2)/sqrt(27+6t-t^2)dt=int(t-2)/sqrt((-(t^2-6t-27)))dt=
int(t-2)/sqrt(-(t-9)(t+3))dt
Let u=t+3, :. du=dt, and
t=u-3, :. t-2=u-5, t-9=u-12,
Let's substitute:
=int(u-5)/sqrt(-(u-12)u)du=int(u-5)/sqrt(u(12-u))du=
int(u-5)/sqrt(12u-u^2)du
Let's use trigonometric substitution:
We draw a right triangle and label an angle theta as shown below:
Now, we will right the basic trigonometric functions for the angle theta:
sintheta=u/sqrt(12u)=sqrt(12u)/12
costheta=sqrt(12u-u^2)/sqrt(12u)
tantheta=u/sqrt(12u-u^2
sin^2theta=u^2/(12u)=u/12
2sinthetacosthetad theta=(du)/12
u=12sin^2theta
du=24sinthetacosthetad theta
sqrt(12u-u^2)=sqrt(12u)costheta=sqrt(12(12sin^2theta))costheta
sqrt(12u-u^2)=12sinthetacostheta
Let's substitute:
int(u-5)/sqrt(12u-u^2)du=int(12sin^2theta-5)/(12sinthetacostheta)(24sinthetacostheta)d theta=
2int(12sin^2theta-5)d theta=24intsin^2thetad theta-10intd theta=
24int(1-cos2theta)/2d theta-10theta=12intd theta-12intcos2thetad theta-10theta=
12theta-12I-10theta=2theta-12I
I=intcos2thetad theta
Let z=2theta, :. dz=2d theta, :. d theta=(dz)/2
I=1/2intcoszdz=1/2sinz=1/2sin2theta
2theta-12I=2theta-6sin2theta
Using the double angle formula:
sin2x=2sinxcosx
2theta-12I=2theta-12sinthetacostheta
Let's substitute back for u:
int(u-5)/sqrt(12u-u^2)du=2arcsin(sqrt(12u)/12)-12(sqrt(12u)/12)(sqrt(12u-u^2)/sqrt(12u))=
2arcsin(sqrt(12u)/12)-cancelcolor(red)(12)(cancelcolor(purple)(sqrt(12u)))/cancelcolor(red)(12)(sqrt(12u-u^2)/cancelcolor(purple)(sqrt(12u)))=
=2arcsin((sqrt(3u))/6)-sqrt(12u-u^2
Now, we can substitute back for t:
int(t-2)/sqrt(27+6t-t^2)dt=2arcsin(sqrt(3(t+3))/6)-sqrt(27+6t-t^2)+C
This is one form of the solution. The result can be in many different forms depending on what you choose to be u and how you set up your triangle and what trigonometric functions you use.