how do you integrate 1011+4x2dx ?

2 Answers
Mar 31, 2018

The answer is =0.72

Explanation:

Calculate the indefinite integral first.

Let 2x=tan(u), , 2dx=sec2(u)du

1+4x2=1+tan2(u)=secu

Therefore, the integral is

I=dx1+4x2=12sec2udusecu=12secudu

=12secu(secu+tanu)dusecu+tanu

Let v=secu+tanu, , dv=(sec2u+secutanu)du

Therefore,

I=12dvv=lnv

=12ln(secu+tanu)

=12ln(1+4x2+2x)+C

Then, the definite integral is

10dx1+4x2=[12ln(1+4x2+2x)]10

=(12ln(2+5))(12ln(1))

=0.72

Mar 31, 2018

answer = 32

Explanation:

1011+4x2.dx
[1(12)]10+[(4x2)12]10
1+[4(1)24(0)2](12)
1+(4)12
1+14
1+12
=)32