Help me to find it please? I am studying for my midterm in real analysis and I got problem in it.
↳Redirected from
"Question #e8623"
To find the limit without l'Hospital's Rules, use #lim_(xrarroo)(1+1/x)^x = e#
#lim_(xrarroo)((x+1)/x)^(3x) = lim_(xrarroo)(1+1/x)^(3x) #
# = (lim_(xrarroo)(1+1/x)^x)^3 #
# = e^3#
#lim_(x->oo) ((x+1)/x)^(3x) = e^3#
Write the function as:
#((x+1)/x)^(3x) = (e^ln((x+1)/x))^(3x) = e^(3x ln((x+1)/x)#
Consider now the limit:
#lim_(x->oo) 3x ln((x+1)/x)#
This is in the indeterminate form #0*oo# but we can reduce it to the form #0/0# by writing as:
#lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) ln((x+1)/x) /(1/x)#
and the use l'Hospital's rule:
#lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) (d/dx ln((x+1)/x)) /(d/dx ( 1/x))#
#lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) (x/(x+1) (x-(x+1))/x^2) /(-1/x^2)#
#lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) x/(x+1) (-1/x^2) /(-1/x^2)#
#lim_(x->oo) 3x ln((x+1)/x) = 3 lim_(x->oo) x/(x+1) = 3#
As #e^x# is a continuous function we then have:
#lim_(x->oo) e^(3x ln((x+1)/x) )= e^((lim_(x->oo) 3x ln((x+1)/x) )) = e^3#
graph{ ((x+1)/x)^(3x) [-1, 100, -2, 49.2]}