If tanx=-3/4 and 3Π/2<x<2Π,then value of sin2x?
1 Answer
Apr 2, 2018
#sin(2x)=-24/25#
Explanation:
We seek
By the double angle identity
#color(blue)(sin(2x)=2sin(x)cos(x)#
Let's express this in term of tangens
#sin(2x)=2sin(x)cos(x)#
#color(white)(sin(2x))=(2sin(x)cos(x))/1#
#color(white)(sin(2x))=(2sin(x)cos(x)sec^2(x))/sec^2(x)#
#color(white)(sin(2x))=(2tan(x))/sec^2(x)#
#color(white)(sin(2x))=(2tan(x))/(1+tan^2(x))#
Now let
#sin(2x)=(2(-3/4))/(1+(-3/4)^2)#
#color(white)(sin(2x))=-(3/2)/(1+9/16)#
#color(white)(sin(2x))=-(3/2*16)/(16+9)#
#color(white)(sin(2x))=-(3*8)/(25)#
#color(white)(sin(2x))=-(24)/(25)#