Integrate csc^3 2x dx ?
2 Answers
Explanation:
We want to solve
I=intcsc^3(2x)dxI=∫csc3(2x)dx
Make a substitution
I=1/2intcsc^3(u)duI=12∫csc3(u)du
Use tangent half-angle substitution
then
I=1/2int((1+s^2)/(2s))^3 2/(1+s^2)dsI=12∫(1+s22s)321+s2ds
color(white)(I)=int(1+s^2)^2/(8s^3)dsI=∫(1+s2)28s3ds
color(white)(I)=1/8int(s^4+2s^2+1)/(s^3)dsI=18∫s4+2s2+1s3ds
color(white)(I)=1/8ints+2s^-1+s^-3dsI=18∫s+2s−1+s−3ds
color(white)(I)=1/8(1/2s^2+2ln(s)-1/2s^-2)+CI=18(12s2+2ln(s)−12s−2)+C
color(white)(I)=1/16(s^2+4ln(s)-1/(s^2))+CI=116(s2+4ln(s)−1s2)+C
Substitute back
I=1/16(tan^2(x)+4ln(tan(x))-1/(tan^2(x)))+CI=116(tan2(x)+4ln(tan(x))−1tan2(x))+C
Explanation:
Here,
Let,
We know that,
substituting back