Integrate csc^3 2x dx ?

2 Answers
Apr 4, 2018

#I=1/16(tan^2(x)+4ln(tan(x))-1/(tan^2(x)))+C#

Explanation:

We want to solve

#I=intcsc^3(2x)dx#

Make a substitution #u=2x=>du=2dx#

#I=1/2intcsc^3(u)du#

Use tangent half-angle substitution #s=tan(u/2)#,
then #csc(u)=(1+s^2)/(2s)# and #du=2/(1+s^2)ds#

#I=1/2int((1+s^2)/(2s))^3 2/(1+s^2)ds#

#color(white)(I)=int(1+s^2)^2/(8s^3)ds#

#color(white)(I)=1/8int(s^4+2s^2+1)/(s^3)ds#

#color(white)(I)=1/8ints+2s^-1+s^-3ds#

#color(white)(I)=1/8(1/2s^2+2ln(s)-1/2s^-2)+C#

#color(white)(I)=1/16(s^2+4ln(s)-1/(s^2))+C#

Substitute back #s=tan(u/2)# and #u=2x#

#I=1/16(tan^2(x)+4ln(tan(x))-1/(tan^2(x)))+C#

Apr 4, 2018

#I=-1/4[csc(2x)cot(2x)+ln|csc(2x)+cot(2x)|]+c#

Explanation:

Here,

#I=intcsc^3 2x dx #

#=int(csc2x)(csc^2(2x))dx#

#=int(sqrt(cot^2(2x)+1))csc^2(2x)dx#

Let,

#color(blue)(cot(2x)=u)=>-csc^2(2x)*2dx=du#

#=>csc^2(2x)dx=-1/2du#

#I=intsqrt(u^2+1)(-1/2)du#

We know that,

#color(red)(intsqrt(x^2+a^2)dx=x/2sqrt(x^2+a^2)+a^2/2ln|x+sqrt(x^2+a^2)|+c#

#I=-1/2intsqrt(u^2+1^2)du#

#=-1/2[u/2sqrt(u^2+1)+1/2ln|u+sqrt(u^2+1)|]+c#

substituting back #color(blue)(u=cot2x#

#=-1/2[cot(2x)/2sqrt(cot^2(2x)+1)+1/2ln|cot(2x)+sqrt(cot^2(2x)+1 )|]+c#

#=-1/2[cot(2x)/2csc(2x)+1/2ln|cot(2x)+csc(2x)|]+c#

#=-1/4[csc(2x)cot(2x)+ln|csc(2x)+cot(2x)|]+c#