Integrate csc^3 2x dx ?
2 Answers
Explanation:
We want to solve
#I=intcsc^3(2x)dx#
Make a substitution
#I=1/2intcsc^3(u)du#
Use tangent half-angle substitution
then
#I=1/2int((1+s^2)/(2s))^3 2/(1+s^2)ds#
#color(white)(I)=int(1+s^2)^2/(8s^3)ds#
#color(white)(I)=1/8int(s^4+2s^2+1)/(s^3)ds#
#color(white)(I)=1/8ints+2s^-1+s^-3ds#
#color(white)(I)=1/8(1/2s^2+2ln(s)-1/2s^-2)+C#
#color(white)(I)=1/16(s^2+4ln(s)-1/(s^2))+C#
Substitute back
#I=1/16(tan^2(x)+4ln(tan(x))-1/(tan^2(x)))+C#
Explanation:
Here,
Let,
We know that,
substituting back