How do you integrate this?
#int 1/(senx+5)# dx
Is it possible to solve this integrate using another way
not this way --> substituting u=#tan(x/2)#
Is it possible to solve this integrate using another way
not this way --> substituting u=
1 Answer
#I=(arctan(cos(x)/(2sqrt(6)))+arctan((2sqrt(6)tan(x))/5))/(2sqrt(6))+C#
Explanation:
Yes, it's a little more complicated however, we seek
#I=int1/(sin(x)+5)dx#
Multiply the DEN and NUM by the conjugate
#I=int(sin(x)-5)/((sin(x)+5)(sin(x)-5))dx#
#color(white)(I)=int(sin(x)-5)/((sin^2(x)-25))dx#
#color(white)(I)=-int(sin(x))/((cos^2(x)+24))dx+int(5)/((cos^2(x)+24))dx#
First integral:
#I_1=-int(sin(x))/((cos^2(x)+24))dx#
Make a substitution
#I_1=int1/((u^2+24))du#
#color(white)(I_1)=1/24int1/((u/sqrt(24))^2+1)du#
#color(white)(I_1)=arctan(cos(x)/sqrt(24))/sqrt(24)+C#
Second integral:
#I_2=int(5)/((cos^2(x)+24))dx#
#color(white)(I_2)=5int(sec^2(x))/((1+24sec^2(x)))dx#
#color(white)(I_2)=5int(sec^2(x))/(24tan^2(x)+25)dx#
Make a substitution
#I_2=5int1/(24u^2+25)du#
#color(white)(I_2)=1/5int1/(((sqrt(24)u)/5)^2+1)du#
#color(white)(I_2)=arctan((sqrt(24)tan(x))/5)/sqrt(24)+C#
Thus
#I=(arctan(cos(x)/sqrt(24))+arctan((sqrt(24)tan(x))/5))/sqrt(24)+C#
#color(white)(I)=(arctan(cos(x)/(2sqrt(6)))+arctan((2sqrt(6)tan(x))/5))/(2sqrt(6))+C#