How do you solve for x in sin2x+cosx=0sin2x+cosx=0?

3 Answers
Apr 5, 2018

So x=pi/2,(7pi)/6x=π2,7π6

Explanation:

We know that sin2x=2sinxcosxsin2x=2sinxcosx

So this becomes,

2sinxcosx+cosx=02sinxcosx+cosx=0

(2sinx+1)(cosx)=0(2sinx+1)(cosx)=0

So either 2sinx+1=02sinx+1=0 so sinx=-1/2sinx=12 in which case x=(7pi)/6x=7π6
Or, cosx=0cosx=0 in which case x=pi/2x=π2

So x=pi/2,(7pi)/6x=π2,7π6

Apr 5, 2018

x=210 or -30 or 330x=210or30or330

Explanation:

Sin(2x)=2sin(x)cos(x)sin(2x)=2sin(x)cos(x)

2sin(x)cos(x)=-cos(x)2sin(x)cos(x)=cos(x)

sin(x)=-1/2sin(x)=12

sin^-1(x)=xsin1(x)=x

sin of x is negative value Only at the third and the forth quarter.

x=210 or -30 or 330x=210or30or330

Apr 5, 2018

pi/2; (7pi)/6; (3pi)/2; (11pi)/6π2;7π6;3π2;11π6 for interval (0, 2pi)(0,2π)

Explanation:

sin 2x + cos x = 0
2sin x.cos x + cos x = 0
cos x(2sin x + 1) = 0
either factor should be zero.
a. cos x = 0
Unit circle gives 2 solutions -->
x = pi/2 + 2kpix=π2+2kπ, and
x = (3pi)/2 + 2kpix=3π2+2kπ.
b. 2sin x + 1 = 0 --> sin x= - 1/2sinx=12
Trig table and unit circle give 2 solutions:
x = - pi/6 + 2kpix=π6+2kπ, or x = (11pi)/6 + 2kpix=11π6+2kπ (co-terminal)
x = pi - (-pi/6) = (7pi)/6 + 2kpix=π(π6)=7π6+2kπ