Simplify ? # (cos^2a - sin^2b)/(sin^2a • sin^2b) - ctg^2a • ctg^2b #
1 Answer
Apr 5, 2018
Explanation:
We want to simplify
#(cos^2(a)-sin^2(b))/(sin^2(a)sin^2(b))-cot^2(a)cot^2(b)#
We will use the identity
#sin^2(x)+cos^2(x)=1#
Thus
#(cos^2(a)-sin^2(b))/(sin^2(a)sin^2(b))-cot^2(a)cot^2(b)#
#(cos^2(a)-sin^2(b))/(sin^2(a)sin^2(b))-(cos^2(a)cos^2(b))/(sin^2(a)sin^2(b))#
#(cos^2(a)-sin^2(b)-cos^2(a)cos^2(b))/(sin^2(a)sin^2(b))#
#(cos^2(a)(1-cos^2(b))-sin^2(b))/(sin^2(a)sin^2(b))#
#(cos^2(a)sin^2(b)-sin^2(b))/(sin^2(a)sin^2(b))#
#(-sin^2(b)(1-cos^2(a)))/(sin^2(a)sin^2(b))#
#(-sin^2(b)sin^2(a))/(sin^2(a)sin^2(b))#
#-1#