Integration of x/(2x+5)?

2 Answers
Apr 7, 2018

#I=1/4((2x+5)-5ln(abs((2x+5))))+C#

Explanation:

We want to solve

#I=intx/(2x+5)dx#

Make a substitution #color(blue)(u=2x+5=>du=2dx#

#I=1/2intx/udu#

But #color(blue)(u=2x+5=>x=(u-5)/2#

#I=1/2int((u-5)/2)/udu#

#color(white)(I)=1/4int(u-5)/udu#

#color(white)(I)=1/4int1-5/udu#

#color(white)(I)=1/4(u-5ln(abs(u)))+C#

Substitute back #u=(2x+5)#

#I=1/4((2x+5)-5ln(abs((2x+5))))+C#

Apr 7, 2018

#I=intx/(2x+5)dx#

Let #2x+5 = t#

Therefore, #dt = 2 dx => dx=dt/2#

Also, #x=(t-5)/2#

#=>I=int(t-5)/(2(t)) dt/2#

#=>1/4int(t-5)/t dt#

#=>1/4[int1dt-5int1/t dt]#

#=>1/4[t-5log|t|] +c#

#=>1/4(2x+5)-5/4log|2x+5 | +c#