How do you integrate?
#intsin(cos^2 2x)*sin4x dx#
1 Answer
Apr 7, 2018
Explanation:
We want to integrate
#I=intsin(cos^2(2x))*sin(4x)dx#
Remember the identity
#color(blue)(cos^2(a)=1/2+1/2cos(2a)#
Thus
#I=intsin(1/2+1/2cos(4x))*sin(4x)dx#
Make a substitution
#I=-1/2intsin(u)du#
#I=1/2cos(u)+C#
Substitute back
#I=1/2cos(1/2+1/2cos(4x))+C#