Solution 2 (without using trigonometry)
let #O# be the center of the circle,
given #XP# is the diameter, #=> angle XYP=anglePQX=90^@#,
given #angleXAP=120^@, => angleXAQ=anglePAY=60^@#,
#=> angleQXA=30^@#, similarly, #angleYPA=30^@#
As #XQYP# is a cyclic quadrilateral,
#=> anglePQY=anglePXY=a#
as #XY=PQ, and XP# is the common hypotenuse of #DeltaXQP and DeltaPYX, => XQ=PY#
#=> angleXYQ=angleXPQ=anglePQY=anglePXY=a#
#=> angleX+angleY=180^@#,
#=> 30+a+a+90=180^@, => a=30^@#
as #angleAXP=angleAPX, => DeltaAXP# is isosceles,
#=> O# is the midpoint of #XP#,
#=> OA# bisects #angleXAP, => angleXAO=120/2=60^@#
#=> DeltaAOX and DeltaAOP# are congruent,
as #DeltaAOX and DeltaAQX# have equal corresponding angles and the common hypotenuse #AX#,
#=>DeltaAOX and DeltaAQX# are congruent,
#=> color(red)(DeltaAOX, DeltaAOP and DeltaAQX " are congruent")#,
#=> color(red)(AQ=AO, AX=AP, QX=OX=OP)#
let #|QXP|# denote area of #DeltaQXP#,
#=> color(red)(|QXP|)=1/2*QP*QX=1/2*18*QX=color(red)(9QX)#
#color(red)(|QXP|)=|AQX|+|AOX|+|AOP|=3*|AOX|=1/2*3*OA*OX=color(red)(1/2*3*OA*QX)#
#=> |QXP|=9cancel(QX)=3/2*OA*cancel(QX)#
#=> OA=2/3*9=18/3=6# cm