Solution 2 (without using trigonometry)
let O be the center of the circle,
given XP is the diameter, => angle XYP=anglePQX=90^@,
given angleXAP=120^@, => angleXAQ=anglePAY=60^@,
=> angleQXA=30^@, similarly, angleYPA=30^@
As XQYP is a cyclic quadrilateral,
=> anglePQY=anglePXY=a
as XY=PQ, and XP is the common hypotenuse of DeltaXQP and DeltaPYX, => XQ=PY
=> angleXYQ=angleXPQ=anglePQY=anglePXY=a
=> angleX+angleY=180^@,
=> 30+a+a+90=180^@, => a=30^@
as angleAXP=angleAPX, => DeltaAXP is isosceles,
=> O is the midpoint of XP,
=> OA bisects angleXAP, => angleXAO=120/2=60^@
=> DeltaAOX and DeltaAOP are congruent,
as DeltaAOX and DeltaAQX have equal corresponding angles and the common hypotenuse AX,
=>DeltaAOX and DeltaAQX are congruent,
=> color(red)(DeltaAOX, DeltaAOP and DeltaAQX " are congruent"),
=> color(red)(AQ=AO, AX=AP, QX=OX=OP)
let |QXP| denote area of DeltaQXP,
=> color(red)(|QXP|)=1/2*QP*QX=1/2*18*QX=color(red)(9QX)
color(red)(|QXP|)=|AQX|+|AOX|+|AOP|=3*|AOX|=1/2*3*OA*OX=color(red)(1/2*3*OA*QX)
=> |QXP|=9cancel(QX)=3/2*OA*cancel(QX)
=> OA=2/3*9=18/3=6 cm