Here,
#{sqrt(3)+sqrt(2)}^x + {sqrt(3)-sqrt(2)}^x =10#
#=>(sqrt3+sqrt2)^x+(((sqrt3-sqrt2)
(sqrt3+sqrt2))/((sqrt3+sqrt2)))^x=10#
#=>(sqrt3+sqrt2)^x+((3-2)/((sqrt3+sqrt2)))^x=10#
Taking, #color(blue)((sqrt3+sqrt2)^x=m,# we get
#m+(1/m)=10#
#=>m^2+1=10m#
#=>m^2-10m=-1#
#=>m^2-10m+25=25-1=24#
#=>(m-5)^2=(2sqrt6)^2#
#=>m-5=+-2sqrt6#
#=>m=5+-2sqrt6#
++#=>m=(3+-2sqrt(3xx2)+2)#
#=>m=(sqrt3)^2+-2sqrt3sqrt2+(sqrt2)^2#
#=>m=(sqrt3+-sqrt2)^2#
But ,we have taken #color(blue)(m=(sqrt3+sqrt2)^x#
So,
#(sqrt3+sqrt2)^x=(sqrt3+sqrt2)^2#
# or(sqrt3+sqrt2)^x=(sqrt3-sqrt2)^2 =(1/(sqrt3+sqrt2))^2#
i.e.#(sqrt3+sqrt2)^x=(sqrt3+sqrt2)^2or(sqrt3+sqrt2)^x=
(sqrt3+sqrt2)^-2#
Comparing we get,
#x=2or x=-2#