Solve the intergral ?
(i) Use trigonometric substitution to evaluate the intergral:
#int_0^sqrt(2)##(dx)/((x^2+2)^2#
(ii) Solve the integral equation
#int_1^x# #f(t) dt = f(x) - 5#
where #x>=##1# and express your answer as an exponential.
↳Redirected from
"What is a supersaturated solution?"
First problem:
Guessing that we should try this transform: #x = sqrt 2tan psi# and #tan psi = x/sqrt 2#
This leaves:
#int_0^(sqrt 2) \ (dx)/((x^2+2)^2#
#= int_0^(pi/4) \ (d(sqrt 2 tan psi))/((2 tan^2 psi+2)^2#
#= sqrt 2/(4) int_0^(pi/4) \ d psi sec^2 psi 1/((sec^2 psi)^2#
#= sqrt 2/(4) int_0^(pi/4) \ d psi cos^2 psi #
#= sqrt 2/(8) int_0^(pi/4) \ \ d psi cos2 psi + 1 #
#= sqrt 2/(8) [ (sin2 psi)/2 + psi]_0^(pi/4) #
#= sqrt 2/(8) [ {1/2 + pi/4} - {0} ] #
#= sqrt 2/(16) [ 1 + pi/2] #
The second problem:
#int_1^x f(t) dt = f(x) - 5#
Using Liebnitz's Rule:
#d/dx( int_1^x f(t) dt = f(x) - 5) implies f(x) = f'(x)#
Which solves as:
#f(x) = alpha e^x#
With this theme:
#int_1^x alpha e^t dt = alpha(e^x - e) #
#implies alpha e^x - alpha e = alpha e^x - 5# or #alpha= 5/e#
#implies f(x) = 5 e^(x-1)#