Show all Polygonal Sequences can be generated by solving the Matrix equation #Avec(x)= vec(b)# where #A# is #[[1, 1, 1], [4, 2, 1], [9,3,1]]# and #vec(b)=[[a_1], [a_2], [a_3]]# is the column vector? Show that #vec(x) =A^-1vec(b)# for all sequences?

1 Answer
Apr 12, 2018

See answer below for details:
#A^-1=[[1/2,-1,1/2],[-5/2,4,-3/2],[3,-3,1]]#
#vecb= [[1],[2+d],[3+3d]] #

and solution for #AA d in ZZ#

#[[a],[b],[c]]=[[d/2],[1-3/2d],[0]]#

Explanation:

Solution Strategy : Define arithmetic sequnce as
#a_n = {1, 1+d, 1+2d, 1+3d, cdots, 1+(n-1)d} #
a polygonal sequence is given nth sum of the arithmetic sequence:
#P_n^d = {1, 2+d, 3+3d, 4+6d, cdots)} #
Now let's choose d=1, Triangular Sequence:
#P_n^3 = {1, 3, 6, 10, cdots} #
It can be shown that : #P_n^3 = {1, 3, 6, 10, cdots}# can be generated by:
#P_n^3 = an^2+bn+c#
For n values of #n={1,2,3}# evaluate the polynomila an match with frist 3 entries of the Triangular Sequence:
#P_1^3 = a+b+c = 1#
#P_2^3 = a=4a+2b+c = 3#
#P_3^3 = 9a+3b+c = 6#
We have 3 equation and 3 uknown that can be rewritten in a vector matrix form:
#[[1,1,1],[4,2,1],[9,3,1]]xx[[a],[b],[c]]=[[1],[3],[6]]#
and in general:
#[[1,1,1],[4,2,1],[9,3,1]]xx[[a],[b],[c]]=[[1],[2+d],[3+3d]]#

This of the form #color(red)(A)vec(x)# and to solve for #vecx#
#vecx=color(red)(A)^-1vecb = color(red)(A)^-1 [[1],[2+d],[3+3d]] #

#[[a],[b],[c]]=[[1/2,-1,1/2],[-5/2,4,-3/2],[3,-3,1]]xx[[1],[2+d],[3+3d]]#
#[[a],[b],[c]]=[[d/2],[1-3/2d],[0]]#