How do you find the indefinite integral of ∫sin 4xe^sin2x dx?
2 Answers
Apr 13, 2018
#I=e^(sin(2x))(sin(2x)-1)+C#
Explanation:
We want to solve
#I=intsin(4x)e^(sin(2x))dx#
Using the trig identity
#I=2intcos(2x)sin(2x)e^(sin(2x))dx#
Make a substitution
#I=intue^(u)du#
#I=ue^u-inte^udu#
#color(white)(I)=ue^u-e^u+C#
#color(white)(I)=e^u(u-1)+C#
Substitute back
#I=e^(sin(2x))(sin(2x)-1)+C#
Apr 13, 2018