How to integrate question of types: #int (asinx+bcosx)/(csinx+dcosx) dx# where a,b,c, d are coefficients by several methods?

1 Answer
Apr 14, 2018

#I=((ac+bd)x+(bc-ad)ln(abs(csin(x)+dcos(x))))/(c^2+d^2)+C#

Explanation:

We want to solve

#I=int(asin(x)+bcos(x))/(csin(x)+dcos(x))dx#

Notice the easier integrals

#color(blue)(I_1=int(csin(x)+dcos(x))/(csin(x)+dcos(x))dx=x+C_1#

#color(blue)(I_2=int(c cos(x)-dsin(x))/(csin(x)+dcos(x))dx=ln(abs(csin(x)+dcos(x)))+C_2#

Can we determinate some constants #A# and #B#, such that

#I=AI_1+BI_2#

Then

#asin(x)+bcos(x)#
#=A(csin(x)+dcos(x))+B(c cos(x)-dsin(x))#

#color(red)(a)sin(x)+color(green)(b)cos(x)=color(red)((Ac-Bd))sin(x)+color(green)((Ad+Bc))cos(x)#

Solving for #A# and #B#

#A=(ac+bd)/(c^2+d^2)#

#B=(bc-ad)/(c^2+d^2)#

Thus

#I=(ac+bd)/(c^2+d^2)I_1+(bc-ad)/(c^2+d^2)I_2#

#color(white)(I)=((ac+bd)I_1+(bc-ad)I_2)/(c^2+d^2)#

#color(white)(I)=((ac+bd)x+(bc-ad)ln(abs(csin(x)+dcos(x))))/(c^2+d^2)+C#