int(e^(2x)+1)/(e^x-1)dx=?

enter image source here

2 Answers
Apr 14, 2018

int(e^(2x)+1)/(e^x-1)dx

Taking e^x=u
=> du = e^x dx

int(e^(2x)+1)/(e^x-1)dx =int(u^2+1)/(u-1) (du)/e^x

=>int(u^2+1)/(u-1) xx(du)/u

=>int(u^2+1)/(u(u-1))du

=>int(u^2+1)/(u^2-u)du

That's option E :)

Apr 14, 2018

int \frac{e^{2x} + 1}{e^x - 1} dx = [ int \frac{u^2 + 1}{u^2 - u} du ]_{u = e^x}

Explanation:

First, we can rewrite the integral as follows:

int \frac{e^{2x} + 1}{e^x - 1} dx = int \frac{e^x + \frac{1}{e^x}}{e^x - 1} e^x dx.

Written like this, we see that the integrand may be viewed as a composed function f(g(x)) with the inner function g(x) = g'(x) = e^x. Therefore,

int \frac{e^x + \frac{1}{e^x}}{e^x - 1} e^x dx =

= [ int \frac{u + \frac{1}{u}}{u - 1} du ]_{u = e^x} =

= [ int \frac{\frac{u^2 + 1}{u}}{u - 1} du ]_{u = e^x} =

=[ int \frac{u^2 + 1}{u^2 - u} du ]_{u = e^x}.