#int(e^(2x)+1)/(e^x-1)dx#=?

enter image source here

2 Answers
Apr 14, 2018

#int(e^(2x)+1)/(e^x-1)dx#

Taking #e^x=u#
#=> du = e^x dx#

#int(e^(2x)+1)/(e^x-1)dx =int(u^2+1)/(u-1) (du)/e^x #

#=>int(u^2+1)/(u-1) xx(du)/u #

#=>int(u^2+1)/(u(u-1))du #

#=>int(u^2+1)/(u^2-u)du #

That's option E :)

Apr 14, 2018

#int \frac{e^{2x} + 1}{e^x - 1} dx = [ int \frac{u^2 + 1}{u^2 - u} du ]_{u = e^x}#

Explanation:

First, we can rewrite the integral as follows:

#int \frac{e^{2x} + 1}{e^x - 1} dx = int \frac{e^x + \frac{1}{e^x}}{e^x - 1} e^x dx#.

Written like this, we see that the integrand may be viewed as a composed function #f(g(x))# with the inner function #g(x) = g'(x) = e^x#. Therefore,

#int \frac{e^x + \frac{1}{e^x}}{e^x - 1} e^x dx =#

#= [ int \frac{u + \frac{1}{u}}{u - 1} du ]_{u = e^x} =#

#= [ int \frac{\frac{u^2 + 1}{u}}{u - 1} du ]_{u = e^x} =#

#=[ int \frac{u^2 + 1}{u^2 - u} du ]_{u = e^x}#.