How do you find the indefinite integral of ∫ dx / sin^3 x cos^5 x ?

1 Answer
Apr 15, 2018

I=14tan4(x)+32tan2(x)+3ln(tan(x))12cot2(x)+C

Explanation:

We want to solve

I=1sin3(x)cos5(x)dx

Multiply the DEN and NUM by sec8(x),
an integral consisting of tangens and secant have good opputunities substitution

I=sec8(x)tan3(x)dx

Make a substitution u=tan(x)du=sec2(x)dx

I=sec6(x)u3du

Use the identity sec2(x)=tan2(x)+1

I=(u2+1)3u3du

I=u6+3u4+3u2+1u3du

I=u3+3u+3u+1u3du

I=14u4+32u2+3ln(u)12u2+C

Substitute back u=tan(x)

I=14tan4(x)+32tan2(x)+3ln(tan(x))12cot2(x)+C