How do you find the indefinite integral of ∫ dx / √(x+1) + √(x+1)^3 ?

1 Answer
Apr 16, 2018

#I=2arctan(sqrt(x+1))+C#

Explanation:

We want to solve

#I=int1/(sqrt(x)+sqrt((x+1)^3))dx#

Rewrite the integrand as

#I=int1/((x+1)^(1/2)+(x+1)^(3/2))dx#

Make a substitution #u=x+1=>du=dx#

#I=int1/(u^(1/2)+u^(3/2))du#

Make a substitution #s=sqrt(u)=>ds=1/(2s)du#

#I=int(2s)/(s+s^3)ds#

#color(white)(I)=2int1/(1+s^2)ds#

#color(white)(I)=2arctan(s)+C#

Substitute back #s=sqrt(u)# and #u=x+1#

#I=2arctan(sqrt(x+1))+C#