How do you prove cosθ + cos2θ + cos3θ = (2cosθ + 1) cos2θ ?

1 Answer
Apr 17, 2018

See explanation

Explanation:

We want to verify the identity

cos(θ)+cos(2θ)+cos(3θ)=(2cos(θ)+1)cos(2θ)

We will use the identity

  • cos(a)cos(b)=12(cos(ab)+cos(a+b))

Thus

RHS=(2cos(θ)+1)cos(2θ)

LHS=2cos(2θ)cos(θ)+cos(2θ)

LHS=2(12((cos(2θθ)+cos(2θ+θ))))+cos(2θ)

LHS=cos(2θθ)+cos(2θ+θ)+cos(2θ)

LHS=cos(θ)+cos(3θ)+cos(2θ)=LHS