Angles problem?

2 Answers
Apr 22, 2018

See below.

Explanation:

First note.

The tangent to a point on the circumference of a circle is always perpendicular to the radius at the same point.

From diagram:

/_OBQ=90^@OBQ=90

Hence:

/_CBO=90^@-2XCBO=902X

For triangle COBCOB

bb(CO)=bb(BO)CO=BO radii of circle.

So:

COBCOB is isosceles.

Hence:

/_OCB=/_CBO=90^@-2XOCB=CBO=902X

For triangle DOCDOC

bb(CO)=bb(DO)CO=DO radii of circle.

DOCDOC is isosceles.

Hence:

/_DCO=/_CDO=XDCO=CDO=X

For /_BCDBCD

We know:

/_OCB=90^@-2XOCB=902X

and

/_DCO=XDCO=X

Hence:

/_BCD=/_OCB+/_DCO=90^@-2X+X=90^@-XBCD=OCB+DCO=902X+X=90X

/_COB=180^@-(/_CBO+/_OCB)COB=180(CBO+OCB)

\ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-(90^@-2X +90^@-2X)

\ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-(180^@-4X)

\ \ \ \ \ \ \ \ \ \ \ \ \ =4X

/_DOC=180^@-(/_CDO+/_DCO)

\ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-(X+X)

\ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-(2X)

\ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-2X

/_DOB+/_DOC+/_COB=360^@

:.

/_DOB=360^@-/_DOC-/_COB

\ \ \ \ \ \ \ \ \ \ \ \ \ \=360^@-(180^@-2X)-4X

\ \ \ \ \ \ \ \ \ \ \ \ \ \=360^@-180^@+2X-4X

\ \ \ \ \ \ \ \ \ \ \ \ \ \=180^@-2X

/_ODA = /_OBA=90^@ Perpendicular.

/_ODA+/_OBA+/_DOB+y=360^@ Sum of angles in quadrilateral

:.

90^@+90^@+(180^@-2X)+y=360^@

y=360^@-180^@-180^@+2X

y=2X

Collecting everything:

/_DCO=X

/_CBO=90^@-2X

/_OCB=90^@-2X

/_BCD=90^@-X

/_DOB=180^@-2X

y=2X

I think there is probably a simpler method for this and maybe someone else will give a more concise way, but hope it helps.

Apr 22, 2018

see explanation.

Explanation:

enter image source here
let r be the radius of the circle,
As OD=OC=r, => angleDCO=angleCDO=x,
given QBA is tangent to the circle and angleCBQ=2x,
=> angleCBO=90-2x,
as OB=OC=r, => angleOCB=angleOBC=90-2x,
angleBCD=angleOCB+angleDCO=90-2x+x=90-x,
As the angle at the center of the circle is twice the angle at the circumference
angleDOB=2*angleBCD=2*(90-x)=180-2x

As ADOB is a quadrilateral, and the sum of the angles of a quadrilateral always adds up to 180^@,
=> y+angleADO+angleDOB+angleABO=360^@,
=> y=360-90-(180-2x)-90=360-360+2x=2x