First note.
The tangent to a point on the circumference of a circle is always perpendicular to the radius at the same point.
From diagram:
#/_OBQ=90^@#
Hence:
#/_CBO=90^@-2X#
For triangle #COB#
#bb(CO)=bb(BO)# radii of circle.
So:
#COB# is isosceles.
Hence:
#/_OCB=/_CBO=90^@-2X#
For triangle #DOC#
#bb(CO)=bb(DO)# radii of circle.
#DOC# is isosceles.
Hence:
#/_DCO=/_CDO=X#
For #/_BCD#
We know:
#/_OCB=90^@-2X#
and
#/_DCO=X#
Hence:
#/_BCD=/_OCB+/_DCO=90^@-2X+X=90^@-X#
#/_COB=180^@-(/_CBO+/_OCB)#
# \ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-(90^@-2X +90^@-2X)#
# \ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-(180^@-4X)#
# \ \ \ \ \ \ \ \ \ \ \ \ \ =4X#
#/_DOC=180^@-(/_CDO+/_DCO)#
# \ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-(X+X)#
# \ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-(2X)#
# \ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-2X#
#/_DOB+/_DOC+/_COB=360^@#
#:.#
#/_DOB=360^@-/_DOC-/_COB#
# \ \ \ \ \ \ \ \ \ \ \ \ \ \=360^@-(180^@-2X)-4X#
# \ \ \ \ \ \ \ \ \ \ \ \ \ \=360^@-180^@+2X-4X#
# \ \ \ \ \ \ \ \ \ \ \ \ \ \=180^@-2X#
#/_ODA = /_OBA=90^@# Perpendicular.
#/_ODA+/_OBA+/_DOB+y=360^@# Sum of angles in quadrilateral
#:.#
#90^@+90^@+(180^@-2X)+y=360^@#
#y=360^@-180^@-180^@+2X#
#y=2X#
Collecting everything:
#/_DCO=X#
#/_CBO=90^@-2X#
#/_OCB=90^@-2X#
#/_BCD=90^@-X#
#/_DOB=180^@-2X#
#y=2X#
I think there is probably a simpler method for this and maybe someone else will give a more concise way, but hope it helps.