First note.
The tangent to a point on the circumference of a circle is always perpendicular to the radius at the same point.
From diagram:
/_OBQ=90^@∠OBQ=90∘
Hence:
/_CBO=90^@-2X∠CBO=90∘−2X
For triangle COBCOB
bb(CO)=bb(BO)CO=BO radii of circle.
So:
COBCOB is isosceles.
Hence:
/_OCB=/_CBO=90^@-2X∠OCB=∠CBO=90∘−2X
For triangle DOCDOC
bb(CO)=bb(DO)CO=DO radii of circle.
DOCDOC is isosceles.
Hence:
/_DCO=/_CDO=X∠DCO=∠CDO=X
For /_BCD∠BCD
We know:
/_OCB=90^@-2X∠OCB=90∘−2X
and
/_DCO=X∠DCO=X
Hence:
/_BCD=/_OCB+/_DCO=90^@-2X+X=90^@-X∠BCD=∠OCB+∠DCO=90∘−2X+X=90∘−X
/_COB=180^@-(/_CBO+/_OCB)∠COB=180∘−(∠CBO+∠OCB)
\ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-(90^@-2X +90^@-2X)
\ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-(180^@-4X)
\ \ \ \ \ \ \ \ \ \ \ \ \ =4X
/_DOC=180^@-(/_CDO+/_DCO)
\ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-(X+X)
\ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-(2X)
\ \ \ \ \ \ \ \ \ \ \ \ \ =180^@-2X
/_DOB+/_DOC+/_COB=360^@
:.
/_DOB=360^@-/_DOC-/_COB
\ \ \ \ \ \ \ \ \ \ \ \ \ \=360^@-(180^@-2X)-4X
\ \ \ \ \ \ \ \ \ \ \ \ \ \=360^@-180^@+2X-4X
\ \ \ \ \ \ \ \ \ \ \ \ \ \=180^@-2X
/_ODA = /_OBA=90^@ Perpendicular.
/_ODA+/_OBA+/_DOB+y=360^@ Sum of angles in quadrilateral
:.
90^@+90^@+(180^@-2X)+y=360^@
y=360^@-180^@-180^@+2X
y=2X
Collecting everything:
/_DCO=X
/_CBO=90^@-2X
/_OCB=90^@-2X
/_BCD=90^@-X
/_DOB=180^@-2X
y=2X
I think there is probably a simpler method for this and maybe someone else will give a more concise way, but hope it helps.