X.COS²X dx ka integration ?
2 Answers
#I=1/4x^2+1/4xsin(2x)+1/8cos(2x)+C#
Explanation:
We want to solve
#I=intxcos^2(x)dx#
Using the trig identity
#I=intx(1/2+1/2cos(2x))dx#
#color(white)(I)=1/2intxdx+intxcos(2x)/2dx#
The first integral is trivial, for the second apply IBP
#color(blue)(intudv=uv-intvdu)#
Let
And
#I_1=intxcos(2x)/2dx#
#color(white)(I_1)=xsin(2x)/4-intsin(2x)/4dx#
#color(white)(I_1)=xsin(2x)/4+cos(2x)/8+C_1#
Thus
#I=1/4x^2+1/4xsin(2x)+1/8cos(2x)+C#
Explanation:
Here,
Where,
Let,
So,
Hence, from