X.COS²X dx ka integration ?

2 Answers
Apr 25, 2018

#I=1/4x^2+1/4xsin(2x)+1/8cos(2x)+C#

Explanation:

We want to solve

#I=intxcos^2(x)dx#

Using the trig identity #color(red)(cos^2(x)=1/2+1/2cos(2x)#

#I=intx(1/2+1/2cos(2x))dx#

#color(white)(I)=1/2intxdx+intxcos(2x)/2dx#

The first integral is trivial, for the second apply IBP

#color(blue)(intudv=uv-intvdu)#

Let #color(blue)(u=x=>du=dx#

And #color(blue)(dv=cos(2x)/2dx=>v=sin(2x)/4#

#I_1=intxcos(2x)/2dx#

#color(white)(I_1)=xsin(2x)/4-intsin(2x)/4dx#

#color(white)(I_1)=xsin(2x)/4+cos(2x)/8+C_1#

Thus

#I=1/4x^2+1/4xsin(2x)+1/8cos(2x)+C#

Apr 25, 2018

#I=1/8[2x^2+2sin2x+cos2x]+C#

Explanation:

Here,

#I=intxcos^2xdx#

#=intx((1+cos2x)/2)dx#

#=1/2intxdx+1/2intxcos2xdx#

#I=1/2*x^2/2+1/2I_1...to(A)#

Where, #I_1=intxcos2xdx#

#"Using"color(blue)" Integration by Parts:"#

#int(uv)dx=uintvdx-int(u'intvdx)dx#

Let, #u=x and v=cos2x=>u'=1andintvdx=(sin2x)/2#

So,

#I_1=x*(sin2x)/2-int1*(sin2x)/2dx#

#=x/2sin2x-1/2intsin2xdx#

#=x/2sin2x-1/2((-cos2x)/2)+c#

#:.I_1=x/2sin2x+(cos2x)/4+c#

Hence, from #(A)#

#I=1/2*x^2/2+1/2[x/2sin2x+(cos2x)/4+c]#

#=x^2/4+x/4sin2x+1/8cos2x+c/2#

#I=1/8[2x^2+2sin2x+cos2x]+C,where.C=c/2#