How can slove this ? #int sin(2x)/ "1+cot^2(x)" dx#

how can slove this ?
#int sin(2x)/ "1+cot^2(x)" dx#

1 Answer
Apr 29, 2018

#I=1/2sin^4(x)+C#

Explanation:

We want to solve

#I=intsin(2x)/(1+cot^2(x))dx#

Use the trig identities

#color(blue)(sin(2x)=2cos(x)sin(x)# and #color(blue)(csc^2(x)=1+cot^2(x)#

Thus

#I=int(2cos(x)sin(x))/(csc^2(x))dx#

#color(white)(I)=2intcos(x)sin^3(x)dx#

Make a substitution #u=sin(x)=>du=cos(x)dx#

#I=2intu^3du#

#color(white)(I)=1/2u^4+C#

Substitute back #u=sin(x)#

#I=1/2sin^4(x)+C#