#int_0^(pi/2)sin^3x=#?

1 Answer
Apr 30, 2018

The definite integral is #2/3#
#0.6666666666666667#

Explanation:

#int_(0)^(pi/2) sin^3x#
Now,
#=int(-cos^2x) sin(x)dx#
Substitute,
#color(grey)(u=cos(x)->dx=-((1)/(sinx))dx#
Therefore,
#=int(u^2-1)dx#
Applying linearity,
#=int u^2du-int 1du# ---(1)

Now, applying power rule in,
#int u^2du#
#=u^3/3# ---(2)
Now, applying constant rule in,
#=int 1du#
#=u# ---(3)
Putting (2) and (3) in (1),
#intu^2du-int1du#
#=u^3/3-u#
Undo substitution in,
#color(grey)(u=cos(x))#
Therefore,
#=(cos^3x)/(3)-cosx#
#therefore =cos^3x/(3)-cosx+C#