Given f(x)=2x^2+11x-21f(x)=2x2+11x21 and g(x)=2x-3g(x)=2x3 how do you determine y=f(g(x))y=f(g(x))?

1 Answer
Apr 30, 2018

= 8x^2 -2x - 368x22x36

Explanation:

f(x) = 2x^2 + 11X -21f(x)=2x2+11X21
g(x) = 2x - 3g(x)=2x3

Substitute the value of g(x)g(x) into the f(x)f(x) function .
f(g(x)) = 2(2x -3)^2 +11(2x - 3) -21 f(g(x))=2(2x3)2+11(2x3)21

= 2( 4x^2 -12x + 9) + (22x - 33) -212(4x212x+9)+(22x33)21

= ( 8x^2 -24x + 18) + (22x - 33) -21(8x224x+18)+(22x33)21

= 8x^2 -24x + 22x - 33 -21+ 188x224x+22x3321+18

= 8x^2 -2x - 368x22x36