How do you simplify #\frac { ( x + 2) + ( x + 2) } { 4x }#?

2 Answers
May 1, 2018

#(x+2)/(2x)#

Explanation:

#((x+2)+(x+2))/(4x)#

First, combine like terms on the numerator:
#(color(red)x quadcolor(blue)(+quad2) quadcolor(red)(+quadx) quadcolor(blue)(+quad2))/(4x)#

#(2x + 4)/(4x)#

Divide numerator and denominator by #color(magenta)2#:
#(2x+4)/(4x) color(magenta)(-: 2/2)#

So the answer is:
#(x+2)/(2x)#

Hope this helps!

May 1, 2018

#4/(2x)#

Explanation:

First, you must develop your nominator: #(x+2)+(x+2)#.
You should get #(2x+4)/(4x)#.
Then, you can simplify the #2x# and the #4x#.
You should obtain #4/(2x)# as a final answer.