Explain and Prove That ? Sec(270°-theta)Sec(90°-theta)-tan(270°-theta)tan(90°+theta) = -1

1 Answer
May 2, 2018

Please see below.

Explanation:

.

sec(270^@-theta)sec(90^@-theta)-tan(270^@-theta)tan(90^@+theta)=-1sec(270θ)sec(90θ)tan(270θ)tan(90+θ)=1

1/cos(270^@-theta)*1/cos(90^@-theta)-sin(270^@-theta)/cos(270^@-theta)*sin(90^@+theta)/cos(90^@+theta)=-11cos(270θ)1cos(90θ)sin(270θ)cos(270θ)sin(90+θ)cos(90+θ)=1

We have the following four identities:

sin(alpha+beta)=sinalphacosbeta+cosalphasinbetasin(α+β)=sinαcosβ+cosαsinβ

sin(alpha-beta)=sinalphacosbeta-cosalphasinbetasin(αβ)=sinαcosβcosαsinβ

cos(alpha+beta)=cosalphacosbeta-sinalphasinbetacos(α+β)=cosαcosβsinαsinβ

cos(alpha-beta)=cosalphacosbeta+sinalphasinbetacos(αβ)=cosαcosβ+sinαsinβ

Therefore,

cos(270^@-theta)=cos270^@costheta+sin270^@sintheta=(0)costheta+(-1)sintheta=0-sintheta=-sinthetacos(270θ)=cos270cosθ+sin270sinθ=(0)cosθ+(1)sinθ=0sinθ=sinθ

cos(90^@-theta)=cos90^@costheta+sin90^@sintheta=(0)costheta+(1)sintheta=0+sintheta=sinthetacos(90θ)=cos90cosθ+sin90sinθ=(0)cosθ+(1)sinθ=0+sinθ=sinθ

sin(270^@-theta)=sin270^@costheta-cos270^@sintheta=(-1)costheta-(0)sintheta=-costheta-0=-costhetasin(270θ)=sin270cosθcos270sinθ=(1)cosθ(0)sinθ=cosθ0=cosθ

sin(90^@+theta)=sin90^@costheta+cos90^@sintheta=(1)costheta+(0)sintheta=costheta+0=costhetasin(90+θ)=sin90cosθ+cos90sinθ=(1)cosθ+(0)sinθ=cosθ+0=cosθ

cos(90^@+theta)=cos90^@costheta-sin90^@sintheta=(0)costheta-(1)sintheta=0-sintheta=-sinthetacos(90+θ)=cos90cosθsin90sinθ=(0)cosθ(1)sinθ=0sinθ=sinθ

Now, let's substitute all the pieces:

1/(-sintheta)*1/sintheta-(-costheta)/(-sintheta)*costheta/(-sintheta)=-1/sin^2theta+cos^2theta/sin^2theta=1sinθ1sinθcosθsinθcosθsinθ=1sin2θ+cos2θsin2θ=

(-1+cos^2theta)/sin^2theta=(-(1-cos^2theta))/sin^2theta=(-sin^2theta)/sin^2theta=-11+cos2θsin2θ=(1cos2θ)sin2θ=sin2θsin2θ=1