How do you factor 49b^2+70b+25?

2 Answers
May 3, 2018

(7b+5)(7b+5)(7b+5)(7b+5) or (7b+5)^2(7b+5)2

Explanation:

49b^2+70b+2549b2+70b+25
49=7*749=77
25=5*525=55
Therefore, this could be a perfect square trinomial. Testing this:
(7b+5)(7b+5)(7b+5)(7b+5) Using FOIL:
=49b^2+35b+35b+25=49b2+35b+35b+25
=49b^2+70b+25=49b^2+70b+25=49b2+70b+25=49b2+70b+25 Therefore, the factorization is
(7b+5)(7b+5)(7b+5)(7b+5) or (7b+5)^2(7b+5)2

May 3, 2018

(7b+5)^2(7b+5)2

Explanation:

49b^2+70b+25" is a "color(blue)"perfect square"49b2+70b+25 is a perfect square

•color(white)(x)(a+b)^2=a^2+2ab+b^2x(a+b)2=a2+2ab+b2

49b^2=(7b)^2rArra=7b49b2=(7b)2a=7b

25=(5)^2rArrb=525=(5)2b=5

"and "2ab=2xx7bxx5=70band 2ab=2×7b×5=70b

rArr49b^2+70b+25=(7b+5)^249b2+70b+25=(7b+5)2