How do you simplify #\frac { x ^ { 2} - 16y ^ { 2} } { x ^ { 2} + 3x y - 4y ^ { 2} } \div \frac { x ^ { 2} - 8x y + 16y ^ { 2} } { x - y }#?

1 Answer
May 3, 2018

#1/ (x - 4y)#

Explanation:

Recall that dividing something by #x# is the same as multiplying it by the inverse #1/x#. That is, #a/b div c/d = a/b * d/c#. We use this algebraic fact to help us simplify.

#(x^2 - 16y^2)/(x^2 + 3xy - 4y^2) div (x^2 - 8xy + 16y^2)/(x-y)#
#= ((x^2 - 16y^2)(x-y))/((x^2 + 3xy - 4y^2)(x^2 - 8xy + 16y^2))#

Now we note that most of these terms can be factored. See that the following are true:

#x^2 - 16y^2 = (x-4y)(x+4y)#
#x^2 - 8xy + 16y^2 = (x-4y)(x-4y)#
#x^2 + 3xy - 4y^2 = (x+4y)(x - y)#

Making the replacements as needed, this gives

#((x-4y)(x+4y)(x-y))/((x+4y)(x-y)(x-4y)^2)#
#= 1/(x-4y) * (x-4y)/(x-4y) * (x+4y)/(x+4y) * (x-y)/(x-y)#
#= 1 / (x - 4y)#

Thus, our final answer is #1 / (x-4y)#.