What is #int ln x / sqrtx dx#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Jim S May 3, 2018 #2sqrtx(lnx-2)+c# Explanation: #intlnx/sqrtxdx=intlnx/color(blue)(2sqrtx)(2color(blue)(dx))# Substitute #sqrtx=u# #x=u^2# #1/(2sqrtx)dx=du# #=# #intlnu^color(red)(2)/cancel(u)(2cancel(u)du)# #=# #int2*2lnudu# #=# #4intlnudu# #=# #4(u##lnu##-u)+c# #=# #4(sqrtxlnsqrtx-sqrtx)+c# #=# #4(1/2sqrtxlnx-sqrtx)+c# #=# #2sqrtx(lnx-2)+c# , #c##in##RR# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 1396 views around the world You can reuse this answer Creative Commons License