How do you Integrate?
#int sec^6x#
1 Answer
May 4, 2018
Explanation:
We want to integrate
#I=intsec^6(x)dx#
Rewrite the integrand using the trig identity
#color(blue)(sec^2(x)=1+tan^2(x)#
#I=intsec^2(x)(sec^2(x))^2dx#
#color(white)(I)=intsec^2(x)(1+tan^2(x))^2dx#
Make a substitution
#I=int(1+u^2)^2du#
#color(white)(I)=intu^4+2u^2+1du#
#color(white)(I)=1/5u^5+2/3u^3+u+C#
Substitute back
#I=1/5tan^5(x)+2/3tan^3(x)+tan(x)+C#