#int_0^1(x^7-1)/lnxdx# = ?
1 Answer
Explanation:
We want to solve
#I=int_0^1(x^7-1)/ln(x)dx#
The indefinite integral involves the exponential- and logarithmic integral, so we will take a different approach
This will be solved by differentiation under the integral sign
Introduce a parameter
#I(a)=int_0^1(x^a-1)/ln(x)dx#
Notice, we seek
Differentiate both sides with respect to
#I'(a)=int_0^1d/(da)((x^a-1)/ln(x))dx#
#color(white)(I'(a))=int_0^1x^adx#
#color(white)(I'(a))=[x^(a+1)/(a+1)]_0^1#
#color(white)(I'(a))=1/(a+1)#
Integrate both sides with respect to
#I(a)=int1/(a+1)da=ln(a+1)+C#
But
#0=ln(0+1)+C=>C=0#
Thus
#I(a)=ln(a+1)#
For
#I(7)=ln(7+1)=ln(8)#
Or equivalent
#I=int_0^1(x^7-1)/ln(x)dx=ln(8)#