If f(x) =sin^3x and g(x) = sqrt(3x-1 , what is f'(g(x)) ?

1 Answer
May 7, 2018

f(x)=sin^3x , D_f=RR

g(x)=sqrt(3x-1), Dg=[1/3,+oo)

D_(fog)={AAxinRR:xinD_g, g(x)inD_f}

x>=1/3 , sqrt(3x-1)inRR -> xin[1/3,+oo)

AAxin[1/3,+oo),

  • (fog)'(x)=f'(g(x))g'(x)=f'(sqrt(3x-1))((3x-1)')/(2sqrt(3x-1))

f'(x)=3sin^2x(sinx)'=3sin^2xcosx

so (fog)'(x)=sin^2(sqrt(3x-1))cos(sqrt(3x-1))*9/(2sqrt(3x-1))