A chord of a circle divides the circle into two parts such that the squares inscribed in the two parts have areas 16 and 144 square units. the radius of the circle, is?

1 Answer
May 8, 2018

#r=sqrt85# unit

Explanation:

enter image source here
Let #O and r# be the center and the radius of the circle, respectively, as shown in the figure.
Let #AB# be the chord,
Side of the small square #=sqrt16=4# units
Side of the big square #=sqrt144=12# units
Recall that the line joining the center of a circle to the midpoint of a chord is perpendicular to the chord,
#=> AB# is perpendicular to #OC#
let #OC=x, => OD=x+4#
In #DeltaODF, OF^2=OD^2+DF^2#,
#=> r^2=(x+4)^2+2^2#
#=> r^2=x^2+8x+20 ----- Eq(1)#
In #DeltaOGH, OH^2=OG^2+GH^2#
#=> r^2=(12-x)^2+6^2#
#=> r^2=x^2-24x+180 ----- Eq(2)#
#Eq(1)=Eq(2)#
#=> x^2+8x+20=x^2-24x+180#,
#=> 32x=160, => x=5# units
#=> OD=x+4=5+4=9# units,
#=> r^2=9^2+2^2=85#
#=> r=sqrt85# units